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Free energy fluctuations for bimodal directed polymers in H1 dimensions
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By investigating the covariance between the free energy and the entropy, we studied the free energy
fluctuations for bimodal directed polymers at finite temperatures. It is proposed that they have a phase transi-
tion from the KPZ behavior fop<p. to the EW behavior fop>p, for the free energy fluctuations at any
finite temperature.
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Directed polymers in a random media has received much Consider a directed polymer on a hyperpyramid lattice
attention[1,2]. This study may have a lot of practical appli- structure with the random energy assigned on each bond.
cations, e.g., in surface growth phenomgsla paper rupture  The partition functionG(x,t) for directed polymers starting
[4], spin glasse$5], and highT, superconductor§6]. The  from (0,0) and ending atx(t) is defined by G(x,t)
problem for directed polymers with continuous disorder dis-==ce ™ =¢'T whereE is the sum of the bimodal distribution
tribution is equivalent to the Kardar-Parisi-ZharigPz)  energies on the pat@ andT is the temperature. The iteration
equatior[3,7—9, which described ballistic depositiga0] in  relation for the partition functiol(x,t) is
surface growth phenomena. When the disorder on the di- _ _ —qIT e IT
rected path is bimodal distribution, where the bond of the GOut+1)=G(x-1be TGx+1be - @
lattice is randomly assigned an energy 0 with the prob- in which € ande, are the energies assigned to the left and
ability p or an energye=1 with the probability +p, this  right bonds of the pointx,t). The free energy(t) is given
problem is called bimodal directed polym¢isl—15. When by F(t)=—TInG(t), where G(t)=Z,G(x,t) is the total
the probability p=p.~0.6447, the bimodal directed poly- partition function. We can also define the internal endigy
mers becomes directed percolatiddP) where an infinite by
fractal cluster of the bonds taking the energy 0 appears

[16]. The directed percolation is relevant to many other fields > > Ece Ee/T
from interface morphology with quenched noj4€] to fluid (E)= x ¢ :Tza InG )
invasion of porous medigl8]. The problem of directed per- _ aT =~

S S e EelT

colation cannot be described by the KPZ equatid2—
15,17,18. Below the thresholdp<p,, it is believed that
bimodal directed polymers at finite temperatures belongs tdhe transverse fluctuationx for the directed polymers is
the KPZ universality[13,15. But, above the thresholg  ((x?))Y? where(x?)=Z3,x?G(x,t)/G(t) (A is the ensemble
>p., the behavior of the bimodal directed polymers is muchaverage of the quantith). The free energy fluctuation is
more elusivg11,13,18. To the best of our knowledge, most AF=(F2—F2)1/2

studies[11-15 are done for zero temperature, not for finite ;
temperatures. At finite temperatures, the entropy is an impor- 10
tant quantity for characterizing the behavior of the directed

polymers in a random mediurfil9,20. In this paper, by 0 : ]
investigating a quantity related to the entropy, we address the 107 E
problem for the behavior of the free energy fluctuations of i ]

bimodal directed polymers at finite temperatures bothpfor = 107
¥

x C

<p; andp>p;.

In our recent work 19,20, the problem for directed poly-
mers with uniform distribution disorder at finite temperatures
has been studied numerically. The behaviors for the internal
energy fluctuations and the ensemble energy fluctuations can
be understood after investigating the entropy fluctuations. In 107
this paper, it is shown that the derivative of the free energy N
fluctuations with temperature is related to the covariance be- 1 10
tween the free energy and the entropy. By investigating this t
derivative, it is proposed that there is a phase transition at the
thresholdp= p, for the free energy fluctuations for bimodal  FIG. 1. Plot of the derivative of the free energy fluctuations with
directed polymers at any finite temperature from the KPZtemperturea(T,t)=4[(AF)?]/JT as a function of timé at differ-
behavior forp<p, to the Edwards-WilkinsotEW) behav-  ent temperature§ =5,2,1%, 4,4 (from bottom to top for p
ior for p>p,. =0.3<pg.
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FIG. 2. (a) Plot of the free energy fluctuationa F)? as a function of time at different temperatureg= 5,2,1%,%,2—10 (from bottom to

top) for p=0.3<p,. (b) Scaling plot for the free energy fluctuationAR)? shown in(a) for p=0.3<p, where circle, square, diamond,
triangle up, triangle left, and triangle down correspond to different temperaTt#éﬁ),S,Z,l%,%, respectively.

At zero 'Femperature, the transverse fluctuation takes the a(T,t)= —2[F78—E g], 3)
KPZ behavior Ax~t?3 whenp<p, and take the DP behav-
ior, Ax~t****whenp=p [11-13,13. Forp>p,, itis also  \here S=((E)—F)/T is the entropy[19,20. In order to
_SUQG(J%S]Fed thatltthe _tranSV?rS?gfg]tl)Ji“ton tak? the KPtZ behayptain the iteration relation for the internal ener@), we
ior. (This result is inconclusivg15].) At zero temperature, o _ Ecpen /T ;
the free energy fluctuations will degenerate into the fluctuaSa" defmeE()f’t)=EC(“)E_C(X’t)e_ o _/G(t)' Itis cle_ar
tion of the sum of the energy on the optimal path. As a resultthat (E)=2E(x,t). The iteration relation forE(x,t) is
the free energy fluctuations hasd ~t3 as the KPZ behav- 119,20
ior for p<p. [11,17 and scale aaF~ (Int)¥? [21,27 for R ) )
p=p. and reach a constant fgr>p, [13,22. At infinite E(x.t+1)=[e @ TE(x—11)G(t)+e /TE(x+11)
temperature, bimodal directed polymers for gmwill be-
come random walks. The free energy fluctuations can beG(t)+¢e ¢ TG(x—11)+ee ' TG(x+11)]/G(t+1).
predicted by the Edwards-Wilkinson equatip?3]. It fol- 4
lows AF~t4,

In order to understand the behaviors of the free energy\/e present SyStematiC numerical simulations for the free en-
fluctuations at finite temperatures, we introduce the deriva€rgy fluctuationAF and the functiona(T,t) based upon
tive of the free energy fluctuations with temperata@,t)  EQgs.(1) and(4) with the initial conditionsG(x,0)= 6y and

=39(AF)?/dT. We have E(x,0)=0. The bond of the hyperpyramid lattice in+1L
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FIG. 3. Plot of the derivative of the free energy fluctuations with temperaifet) = [ (AF)?]/JT as a function of time for p

=0.8>p, at different temperaturea) T=2,13,% (from bottom to top and(b) T=%,%,5, 55,25 (from top to botton.,
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FIG. 4. (a) Plot of the free energy fluctuationd F)? as a function of time at different temperaturéb=103,%, 15,35, & (from top to

bottom for p=0.8>p, . (b) Scaling plot for the free energy fluctuationsK)? shown in(a) for p=0.8<p, where circle, square, diamond,

triangle up, triangle left, and triangle down correspond to different temperafures ¢, . 35, 25, a5, respectively.

dimension is randomly assigned an enekgy0 with the  perature. It means that the free energy fluctuatiaxB)(do
probability p or an energye=1 with the probability 1-p. not take the KPZ behaviors wher»p. . For finite tempera-
We use length up td=2000. Six thousand configurations tures, numerical simulations show that the increase of the
were collected to take the ensemble average. free energy fluctuations with the polymer lendtbecomes
For p=0.3<p., our simulations show that the function faster and fastefsee Fig. 48)]. We suggest that the free
a(T,t)<0 for any timet (see Fig. 1L Therefore, we have energy fluctuations will crossover from the constant ¥4
(AF).<(AF)<(AF), when the polymer lengthis long  for long timet at any finite temperature. We find very good
enough, where AF)+ is the free energy fluctuations at the fit with the scaling relations XF)=g(T>%) for T<0.25
temperaturel. Our simulations suggest that the free energylsee Fig. 40)].
fluctuations will crossover from' to t'/2 at any finite tem- At finite temperatures, a phase transition can be observed
perature[see Fig. 2a)]. Assuming the scaling relatiodF  for the free energy fluctuations from the KPZ behavior
=T (T~5t) for T>1, the data collapse very wdlee Fig. (AF)~tfor p<p. to the EW behavior, §F)~t"* for p
2(b)]. >p.. This result confirms that the bimodal direccted poly-
For p<p.=0.6447, when the value of is near the mers at finite temperatures far<p. belongs to the KPZ
thresholdp,, the functiona(T,t) may be positive for finite universality. But it excludes the possibilifg1] that the KPZ
temperatured at small timet. But, it will decrease with the universality, holding forp>p.. This suggests that the dis-
polymer lengtht and become negative eventually. For creteness of the random medium has a strong effect upon the
>p.=0.6447, when the value @f is near the threshold,,  behavior of the directed polymers.
the functiona(T,t) may be positive for finite temperatures at At the thresholdp=p., an infinite fractal cluster of the
small timet. However, it will become positive when the bonds taking the energy=0 appears. The situations will be
polymer lengtht is long. more complicated. Our simulations show that the free energy
For p=0.8>p., our simulations show that the function fluctuations seem to scale a¥* for long timet at finite
a(T,1)>0 at any timet (see Fig. 3. Therefore, we have temperatures. But this result is inconclusive and needs fur-
(AF)o<(AF)1<(AF)., after enough time. We note that ther study.
the functionsa/(T,t) are not monotonic with the tempera-
tures. The functiom(T,t) tends to zero at the two limits: | would like to thank Professor S. Havlin and Professor
T—0 or T—e and reach a maximum at abolit=0.25. M. Schwartz for insightful questions that inspired this re-
Because the free energy fluctuationsH) scale ast’* at  search effort. This work is supported by the National Natural
infinite temperature, AF) must not scale as’® at any tem-  Science Foundation of Chingrant No.10002019
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