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Free energy fluctuations for bimodal directed polymers in 1¿1 dimensions
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By investigating the covariance between the free energy and the entropy, we studied the free energy
fluctuations for bimodal directed polymers at finite temperatures. It is proposed that they have a phase transi-
tion from the KPZ behavior forp,pc to the EW behavior forp.pc for the free energy fluctuations at any
finite temperature.
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Directed polymers in a random media has received m
attention@1,2#. This study may have a lot of practical app
cations, e.g., in surface growth phenomena@3#, paper rupture
@4#, spin glasses@5#, and high-Tc superconductors@6#. The
problem for directed polymers with continuous disorder d
tribution is equivalent to the Kardar-Parisi-Zhang~KPZ!
equation@3,7–9#, which described ballistic deposition@10# in
surface growth phenomena. When the disorder on the
rected path is bimodal distribution, where the bond of
lattice is randomly assigned an energye50 with the prob-
ability p or an energye51 with the probability 12p, this
problem is called bimodal directed polymers@11–15#. When
the probability p5pc'0.6447, the bimodal directed poly
mers becomes directed percolation~DP! where an infinite
fractal cluster of the bonds taking the energye50 appears
@16#. The directed percolation is relevant to many other fie
from interface morphology with quenched noise@17# to fluid
invasion of porous media@18#. The problem of directed per
colation cannot be described by the KPZ equation@12–
15,17,18#. Below the thresholdp,pc , it is believed that
bimodal directed polymers at finite temperatures belong
the KPZ universality@13,15#. But, above the thresholdp
.pc , the behavior of the bimodal directed polymers is mu
more elusive@11,13,15#. To the best of our knowledge, mo
studies@11–15# are done for zero temperature, not for fini
temperatures. At finite temperatures, the entropy is an im
tant quantity for characterizing the behavior of the direc
polymers in a random medium@19,20#. In this paper, by
investigating a quantity related to the entropy, we address
problem for the behavior of the free energy fluctuations
bimodal directed polymers at finite temperatures both fop
,pc andp.pc .

In our recent work@19,20#, the problem for directed poly
mers with uniform distribution disorder at finite temperatur
has been studied numerically. The behaviors for the inte
energy fluctuations and the ensemble energy fluctuations
be understood after investigating the entropy fluctuations
this paper, it is shown that the derivative of the free ene
fluctuations with temperature is related to the covariance
tween the free energy and the entropy. By investigating
derivative, it is proposed that there is a phase transition a
thresholdp5pc for the free energy fluctuations for bimod
directed polymers at any finite temperature from the K
behavior forp,pc to the Edwards-Wilkinson~EW! behav-
ior for p.pc .
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Consider a directed polymer on a hyperpyramid latt
structure with the random energy assigned on each bo
The partition functionG(x,t) for directed polymers starting
from (0,0) and ending at (x,t) is defined by G(x,t)
5(Ce2EC /T whereEC is the sum of the bimodal distribution
energies on the pathC andT is the temperature. The iteratio
relation for the partition functionG(x,t) is

G~x,t11!5G~x21,t !e2e l /T1G~x11,t !e2er /T, ~1!

in which e l and e r are the energies assigned to the left a
right bonds of the point (x,t). The free energyF(t) is given
by F(t)52T ln G(t), where G(t)5(xG(x,t) is the total
partition function. We can also define the internal energy^E&
by

^E&5

(
x

(
C

ECe2EC /T

(
x

(
C

e2EC /T

5T2
] ln G

]T
. ~2!

The transverse fluctuationDx for the directed polymers is
(^x2&)1/2 where^x2&5(xx

2G(x,t)/G(t) (Ā is the ensemble
average of the quantityA). The free energy fluctuation is
DF5(F̄22F̄2)1/2.

FIG. 1. Plot of the derivative of the free energy fluctuations w
temperturea(T,t)5]@(DF)2#/]T as a function of timet at differ-

ent temperaturesT55,2,1,14 , 1
20 , 1

30 ~from bottom to top! for p
50.3,pc .
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FIG. 2. ~a! Plot of the free energy fluctuations (DF)2 as a function of timet at different temperaturesT55,2,1,12 , 1
4 , 1

20 ~from bottom to
top! for p50.3,pc . ~b! Scaling plot for the free energy fluctuations (DF)2 shown in~a! for p50.3,pc where circle, square, diamond

triangle up, triangle left, and triangle down correspond to different temperaturesT510,5,2,1,12 , 1
3 , respectively.
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At zero temperature, the transverse fluctuation takes
KPZ behavior,Dx;t2/3 whenp,pc and take the DP behav
ior, Dx;t0.633whenp5pc @11–13,15#. For p.pc , it is also
suggested that the transverse fluctuation take the KPZ be
ior. ~This result is inconclusive@15#.! At zero temperature
the free energy fluctuations will degenerate into the fluct
tion of the sum of the energy on the optimal path. As a res
the free energy fluctuations haveDF;t1/3 as the KPZ behav-
ior for p,pc @11,12# and scale asDF;(ln t)1/2 @21,22# for
p5pc and reach a constant forp.pc @13,22#. At infinite
temperature, bimodal directed polymers for anyp will be-
come random walks. The free energy fluctuations can
predicted by the Edwards-Wilkinson equation@23#. It fol-
lows DF;t1/4.

In order to understand the behaviors of the free ene
fluctuations at finite temperatures, we introduce the der
tive of the free energy fluctuations with temperaturea(T,t)
5](DF)2/]T. We have
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a~T,t !522@FS2F̄ S̄#, ~3!

where S5(^E&2F)/T is the entropy@19,20#. In order to
obtain the iteration relation for the internal energy^E&, we
can defineÊ(x,t)[(C(x,t)EC(x,t)e

2EC(x,t) /T/G(t). It is clear
that ^E&5(xÊ(x,t). The iteration relation forÊ(x,t) is
@19,20#:

Ê~x,t11!5@e2e l /TÊ~x21,t !G~ t !1e2er /TÊ~x11,t !

G~ t !1e le
2e l /TG~x21,t !1e re

2er /TG~x11,t !]/G~ t11!.
~4!

We present systematic numerical simulations for the free
ergy fluctuationDF and the functiona(T,t) based upon
Eqs.~1! and~4! with the initial conditionsG(x,0)5dx,0 and
Ê(x,0)50. The bond of the hyperpyramid lattice in 111
FIG. 3. Plot of the derivative of the free energy fluctuations with temperaturea(T,t)5]@(DF)2#/]T as a function of timet for p

50.8.pc at different temperatures:~a! T52,1,12 , 1
4 ~from bottom to top! and ~b! T5

1
4 , 1

6 , 1
10 , 1

20 , 1
40 ~from top to bottom!.
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FIG. 4. ~a! Plot of the free energy fluctuations (DF)2 as a function of timet at different temperaturesT510,12 , 1
4 , 1

10 , 1
20 , 1

60 ~from top to
bottom! for p50.8.pc . ~b! Scaling plot for the free energy fluctuations (DF)2 shown in~a! for p50.8,pc where circle, square, diamond
triangle up, triangle left, and triangle down correspond to different temperaturesT5

1
4 , 1

6 , 1
10 , 1

20 , 1
40 , 1

60 , respectively.
s

n

e
g

at
e

n

-
:

the

e

d

ved
ior

ly-

-
the

e
rgy

fur-

or
e-
ral
dimension is randomly assigned an energye50 with the
probability p or an energye51 with the probability 12p.
We use length up tot52000. Six thousand configuration
were collected to take the ensemble average.

For p50.3,pc , our simulations show that the functio
a(T,t),0 for any timet ~see Fig. 1!. Therefore, we have
(DF)`,(DF)T,(DF)0 when the polymer lengtht is long
enough, where (DF)T is the free energy fluctuations at th
temperatureT. Our simulations suggest that the free ener
fluctuations will crossover fromt1/4 to t1/3 at any finite tem-
perature@see Fig. 2~a!#. Assuming the scaling relationDF
5T5/4f (T25t) for T. 1

3 , the data collapse very well@see Fig.
2~b!#.

For p,pc50.6447, when the value ofp is near the
thresholdpc , the functiona(T,t) may be positive for finite
temperaturesT at small timet. But, it will decrease with the
polymer lengtht and become negative eventually. Forp
.pc50.6447, when the value ofp is near the thresholdpc ,
the functiona(T,t) may be positive for finite temperatures
small time t. However, it will become positive when th
polymer lengtht is long.

For p50.8.pc , our simulations show that the functio
a(T,t).0 at any timet ~see Fig. 3!. Therefore, we have
(DF)0,(DF)T,(DF)` after enough timet. We note that
the functionsa(T,t) are not monotonic with the tempera
tures. The functiona(T,t) tends to zero at the two limits
T→0 or T→` and reach a maximum at aboutT50.25.
Because the free energy fluctuations (DF) scale ast1/4 at
infinite temperature, (DF) must not scale ast1/3 at any tem-
05710
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perature. It means that the free energy fluctuations (DF) do
not take the KPZ behaviors whenp.pc . For finite tempera-
tures, numerical simulations show that the increase of
free energy fluctuations with the polymer lengtht becomes
faster and faster@see Fig. 4~a!#. We suggest that the fre
energy fluctuations will crossover from the constant tot1/4

for long time t at any finite temperature. We find very goo
fit with the scaling relations (DF)5g(T3.4t) for T,0.25
@see Fig. 4~b!#.

At finite temperatures, a phase transition can be obser
for the free energy fluctuations from the KPZ behav
(DF);t1/3 for p,pc to the EW behavior, (DF);t1/4 for p
.pc . This result confirms that the bimodal direccted po
mers at finite temperatures forp,pc belongs to the KPZ
universality. But it excludes the possibility@11# that the KPZ
universality, holding forp.pc . This suggests that the dis
creteness of the random medium has a strong effect upon
behavior of the directed polymers.

At the thresholdp5pc , an infinite fractal cluster of the
bonds taking the energye50 appears. The situations will b
more complicated. Our simulations show that the free ene
fluctuations seem to scale ast1/4 for long time t at finite
temperatures. But this result is inconclusive and needs
ther study.
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